Временно-неоднорідні ланцюги Маркова

Я намагаюся з'ясувати, що відомо про часові-неоднорідні ергодичні ланцюжки Маркова, де матриця переходів може змінюватися з плином часу. Всі підручники та лекційні замітки я міг знайти спочатку ввести ланцюжки Маркова таким чином, але потім швидко обмежуються тимчасовим однорідним випадком, коли у вас є одна перехідна матриця.

Очевидно, що загалом такі ланцюжки Маркова, можливо, не збігаються з унікальним стаціонарним розподілом, але я був би здивований, якщо не існує великого (нижчого) класу цих ланцюгів, де гарантується збіжність. Я особливо зацікавлений в теоремах про час змішування та теоремах збіжності, які становлять, коли існує стаціонарне розподіл.

1
Перекладено на mathoverflow.net/questions/168398 . Наступного разу, якщо ви перехресне повідомлення, додайте посилання на питання двома способами.
додано Автор pseudon, джерело
Чи не існує стаціонарна збіжність, якщо матриця переходу збігається?
додано Автор BKS, джерело
Ну, мені було цікаво, чи це правда, але не знайшлося посилання.
додано Автор dynamicruss, джерело
Я спробую опублікувати це на mathoverlow ...
додано Автор dynamicruss, джерело

Відповідей немає

0